jueves, 27 de octubre de 2011

El agua y sus componentes

El agua es una sustancia cuya molécula está formada por dos átomos de hidrógeno y uno de oxígeno (H2O). Es esencial para la supervivencia de todas las formas conocidas de vida. El término agua, generalmente, se refiere a la sustancia en su estado líquido, pero la misma puede hallarse en su forma sólida llamada hielo, y en forma gaseosa denominada vapor. El agua cubre el 71% de la superficie de la corteza terrestre.2 Se localiza principalmente en los océanos donde se concentra el 96,5% del agua total, los glaciares y casquetes polares poseen el 1,74%, los depósitos subterráneos (acuíferos), los permafrost y los glaciares continentales suponen el 1,72% y el restante 0,04% se reparte en orden decreciente entre lagos, humedad del suelo, atmósfera, embalses, ríos y seres vivos.3 El agua es un elemento común del sistema solar, hecho confirmado en descubrimientos recientes. Puede ser encontrada, principalmente, en forma de hielo; de hecho, es el material base de los cometas y el vapor que compone sus colas.




Propiedades Físicas Del Agua

El agua químicamente pura es un liquido inodoro e insípido; incoloro y transparente en capas de poco espesor, toma color azul cuando se mira a través de espesores de seis y ocho metros, porque absorbe las radiaciones rojas. Sus constantes físicas sirvieron para marcar los puntos de referencia de la escala termométrica Centígrada.

A la presión atmosférica de 760 milímetros el agua hierve a temperatura de 100°C y el punto de ebullición se eleva a 374°, que es la temperatura critica a que corresponde la presión de 217,5 atmósferas; en todo caso el calor de vaporización del agua asciende a 539 calorías/gramo a 100°.
Mientras que el hielo funde en cuanto se calienta por encima de su punto de fusión, el agua liquida se mantiene sin solidificarse algunos grados por debajo de la temperatura de cristalización (agua subenfriada) y puede conservarse liquida a –20° en tubos capilares o en condiciones extraordinarias de reposo. La solidificación del agua va acompañada de desprendimiento de 79,4 calorías por cada gramo de agua que se solidifica. Cristaliza en el sistema hexagonal y adopta formas diferentes, según las condiciones de cristalización.

A consecuencia de su elevado calor especifico y de la gran cantidad de calor que pone en juego cuando cambia su estado, el agua obra de excelente regulador de temperatura en la superficie de la Tierra y más en las regiones marinas.

El agua se comporta anormalmente; su presión de vapor crece con rapidez a medida que la temperatura se eleva y su volumen ofrece la particularidad de ser mínimo a la de 4°. A dicha temperatura la densidad del agua es máxima, y se ha tomado por unidad. A partir de 4° no sólo se dilata cuando la temperatura se eleva,. sino también cuando se enfría hasta 0°: a esta temperatura su densidad es 0,99980 y al congelarse desciende bruscamente hacia 0,9168, que es la densidad del hielo a 0°, lo que significa que en la cristalización su volumen aumenta en un 9 por 100.

Las propiedades físicas del agua se atribuyen principalmente a los enlaces por puente de hidrógeno, los cuales se presentan en mayor número en el agua sólida, en la red cristalina cada átomo de la molécula de agua está rodeado tetraédricamente por cuatro átomos de hidrógeno de otras tantas moléculas de agua y así sucesivamente es como se conforma su estructura.

Cuando el agua sólida (hielo) se funde la estructura tetraédrica se destruye y la densidad del agua líquida es mayor que la del agua sólida debido a que sus moléculas quedan más cerca entre sí, pero sigue habiendo enlaces por puente de hidrógeno entre las moléculas del agua líquida.

Cuando se calienta agua sólida, que se encuentra por debajo de la temperatura de fusión, a medida que se incrementa la temperatura por encima de la temperatura de fusión se debilita el enlace por puente de hidrógeno y la densidad aumenta más hasta llegar a un valor máximo a la temperatura de 3.98ºC y una presión de una atmósfera. A temperaturas mayores de 3.98 ºC la densidad del agua líquida disminuye con el aumento de la temperatura de la misma manera que ocurre con los otros líquidos.

Elevada fuerza de cohesión entre sus moléculas: debido a los puentes de hidrógeno que se establecen las moléculas de agua permanecen unidas entre sí de forma más intensa que en otros compuestos similares.
El agua es un líquido prácticamente incompresible: no es fácil reducir su volumen mediante presión, pues las moléculas de agua están enlazadas entre sí manteniendo unas distancias intermoleculares más o menos fijas. Por ello muchos organismos usan agua para fabricar sus esqueletos hidrostáticos, como los anélidos y celentéreos.
Elevada tensión superficial: su superficie opone gran resistencia a romperse, lo que permite que muchos organismos puedan “andar” sobre el agua y vivan asociados a esa película superficial.
Capilaridad: ascenso de la columna de agua a través de tubos de diámetro capilar, fenómeno que depende de la capacidad de adhesión de las moléculas de agua a las paredes de los conductos capilares y de la cohesión de las moléculas de agua entre si. Las plantas utilizan esta propiedad para la ascensión de la sabia bruta por el xilema.
Elevado calor específico: Hace falta mucha energía para elevar su temperatura. esto convierte al agua en un buen aislante térmico.
Elevado calor de vaporización: debido a que para pasar al estado sólido parte de la energía suministrada se emplea en romper los enlaces de puentes de hidrógeno.
Mayor densidad en estado liquido que en estado sólido: el hielo flota en el agua.
Elevada constante dieléctrica. Al ser un dipolo el agua se convierte en el gran disolvente universal: compuestos iónicos y polares se disuelven fácilmente en agua.
Bajo grado de ionización: sólo una de cada 551.000.000 moléculas de agua se encuentra disociada en forma iónica. La concentración de iones hidroxilo (OH-1) y de iones de hidrógeno (protones) H+ es la misma 10-7 molar. El agua es desde el punto de vista del pH, neutra.
La acidez y la basicidad constituyen el conjunto de propiedades características de dos importantes grupos de sustancias químicas: los ácidos y las bases. Las ideas actuales sobre tales conceptos químicos consideran los ácidos como dadores de protones y las bases como aceptoras. Los procesos en los que interviene un ácido interviene también su base conjugada, que es la sustancia que recibe el protón cedido por el ácido. Tales procesos se denominan reacciones ácido-base.
La acidez y la basicidad constituyen el conjunto de propiedades características de dos importantes grupos de sustancias químicas: los ácidos y las bases. Las ideas actuales sobre tales conceptos químicos consideran los ácidos como dadores de protones y las bases como aceptoras. Los procesos en los que interviene un ácido interviene también su base conjugada,que es la sustancia que recibe el protón cedido por el ácido. Tales procesos se denominan reacciones ácido-base.
La acidez y la basicidad son dos formas contrapuestas de comportamiento de las sustancias químicas cuyo estudio atrajo siempre la atención de los químicos. En los albores mismos de la ciencia química, Boyle y Lavoisier estudiaron sistemáticamente el comportamiento de las sustancias agrupadas bajo los términos de ácido y álcali (base).
Pero junto con los estudios descriptivos de sus propiedades, el avance de los conocimientos sobre la estructura del átomo y sobre la naturaleza íntima de los procesos químicos aportó nuevas ideas sobre los conceptos de ácido y de base.
En la actualidad, el resultado final de la evolución de esos dos conceptos científicos constituye un importante capítulo de la química general que resulta imprescindible para entender la multitud de procesos químicos que, ya sea en la materia viva, ya sea en la materia inerte, se engloban bajo el nombre de reacciones ácido-base .

Polaridad del Agua
La molécula de agua es muy polar, puesto que hay una gran diferencia de electronegatividad entre el hidrógeno y el oxígeno. Los átomos de oxígeno son mucho más electronegativos (atraen más a los electrones) que los de hidrógeno, lo que dota a los dos enlaces de una fuerte polaridad eléctrica, con un exceso de carga negativa del lado del oxígeno, y de carga positiva del lado de los hidrógenos. Los dos enlaces no están opuestos, sino que forman un ángulo de 104,45° debido a la hibridación sp3 del átomo de oxígeno así que, en conjunto, los tres átomos forman un molécula angular, cargado negativamente en el vértice del ángulo, donde se ubica el oxígeno y, positivamente, en los extremos de la molécula, donde se encuentran los hidrógenos. Este hecho tiene una importante consecuencia, y es que las moléculas de agua se atraen fuertemente, adhiriéndose por donde son opuestas las cargas. En la práctica, un átomo de hidrógeno sirve como puente entre el átomo de oxígeno al que está unido covalentemente y el oxígeno de otra molécula. La estructura anterior se denomina enlace de hidrógeno o puente de hidrógeno.
El hecho de que las moléculas de agua se adhieran electrostáticamente, a su vez modifica muchas propiedades importantes de la sustancia que llamamos agua, como la viscosidad dinámica, que es muy grande, o los puntos (temperaturas) de fusión y ebullición o los calores de fusión y vaporización, que se asemejan a los de sustancias de mayor masa molecular.

Molaridad o de alguna especie molecular, iónica, o atómica que se encuentra en un volumen dado. Sin embargo, en termodinámica la utilización de la concentración molar a menudo no es conveniente, porque el volumen de la mayor parte de las soluciones depende en parte de la temperatura, debido a la dilatación térmica. Este problema se resuelve normalmente introduciendo coeficientes o factores de corrección d´ la temperatura, o utilizando medidas de concentración independiente de la temperatura tales como la molalidad.

Fuentes de hidrógeno
La economía del hidrógeno utilizaría una fuente energética no basada en combustibles fósiles (energías renovables/nuclear/fusión), utilizando varios métodos (electrólisis, ciclo del sulfuro-yodo) para producir el gas de hidrógeno para su uso en los múltiples sectores como fuente de energía almacenada. Si la energía se utiliza para producir hidrógeno, entonces el hidrógeno se podría utilizar como forma de almacenaje de energía substituyendo el gas y el petróleo causantes de emisiones de gases de efecto invernadero.
En una economía del hidrógeno, los grandes generadores rurales de hidrógeno de alta eficacia se combinarían con un sistema de distribución (como el sistema de la distribución del gas natural pero capaz de satisfacer los desafíos adicionales del transporte del hidrógeno). En la distribución de energía el usuario intermedio y final podría utilizar las celdas de combustible para satisfacer sus necesidades, substituyendo los actuales sistemas de generación y distribución local, y los vehículos de combustión interna. Sistemas similares se utilizan actualmente con el gas natural para producir electricidad, en instalaciones urbanas con cogeneración donde además se aprovecha el calor residual.
La fuente de energía primaria para producir hidrógeno podía ser combustible nuclear, o fósil. En una economía completa del hidrógeno, incluso las fuentes eléctricas primarias como la energía hidráulica y la energía eólica se podrían utilizar para hacer el hidrógeno, en vez de distribuirla directamente en la red eléctrica (el equilibrio apropiado entre la distribución del hidrógeno y la distribución eléctrica interurbana es una de las preguntas básicas a medio resolver en la economía del hidrógeno). Los grandes generadores que produjesen hidrógeno de fuentes de energía fósiles generarían cantidades enormes de contaminación, pero centralizan las emisiones, y las ciudades quedarían limpias de polución, ya que las emisiones se podrían realizar en zonas despobladas, y los sistemas de control de emisión serían más fáciles de examinar.
Energía solar
Es la energía asociada a la radiación solar. La forma de energía que posee el Sol es energía nuclear interna que se transforma en la energía que emite mediante procesos de fusión. El Sol emite sin cesar lo que se llama energía radiante o, simplemente, radiación. Se transforma en lo que habitualmente se denomina energía térmica y en energía eléctrica. Se puede realizar directamente (fotovoltaica) o indirectamente.
Una ventaja importante de la energía solar en este modelo (además de tratarse de una fuente renovable y no contaminante) es la posibilidad de funcionar de modo distribuido: en línea con el concepto de energía 2.0, la energía solar permitiría a los consumidores generar su propia energía reduciendo la dependencia y las pérdidas relacionadas con el transporte.
Energía eólica
Es la energía asociada al viento. La forma de energía que posee es la energía cinética del viento, que podemos aprovechar en los molinos, en la navegación a vela. Se puede transformar en energía mecánica en los molinos de vientos o barcos de vela, y en energía eléctrica en los aerogeneradores.
Energía hidráulica
Es la energía asociada a los saltos de agua ríos y embalses La forma de energía que posee el agua de los embalses es energía potencial gravitatoria, que podemos aprovechar conduciéndola y haciéndola caer por efecto de la gravedad. Se puede transformar en energía mecánica en los molinos de agua y en energía eléctrica en las centrales hidroeléctricas.
Energía nuclear de fisión
Es la energía asociada al uso del uranio. La forma de energía que se aprovecha del uranio es la energía interna de sus núcleos.
Se transforma en energía eléctrica. Una parte importante del suministro de energía eléctrica en los países desarrollados tiene origen nuclear.
Energía nuclear de fusión
Recibe el nombre de fusión nuclear la reacción en la que dos núcleos muy ligeros (hidrógeno) se unen para formar un núcleo más pesado y estable, con gran desprendimiento de energía.


Hidrato es un término utilizado en química orgánica y química inorgánica para indicar que una sustancia contiene agua.En química orgánica, un hidrato es un compuesto formado por el agregado de agua o sus elementos a una molécula receptora. Por ejemplo, el etanol, C2—H5—OH, puede ser considerado un hidrato de etileno, CH2=CH2, formado por el agregado de H a un C y OH al otro C. Una molécula de agua puede ser eliminada, por ejemplo mediante la acción de ácido sulfúrico. Otro ejemplo es el hidrato de cloral, CCl3—CH(OH)2, que puede ser obtenido mediante la reacción de agua con cloral, CCl3—CH=O.
Otras moléculas son llamadas hidratos por razones históricas. La glucosa, C6H12O6, se pensó originalmente que respondía a la fórmula C6(H2O)6 y fue identificada como un carbohidrato, pero esto es una descripción de su estructura tal como se la conoce hoy en día. Por otra parte el metanol es a menudo ofrecido como “metil hidrato”, lo que implica una fórmula que es incorrecta ( CH3OH2 ), cuando la fórmula correcta es CH3—OH.

Purificación del agua

Las impurezas suspendidas y disueltas en el agua natural impiden que ésta sea adecuada para numerosos fines. Los materiales indeseables, orgánicos e inorgánicos, se extraen por métodos de criba y sedimentación que eliminan los materiales suspendidos. Otro método es el tratamiento con ciertos compuestos, como el carbón activado, que eliminan los sabores y olores desagradables. También se puede purificar el agua por filtración, o por cloración o irradiación que matan los microorganismos infecciosos.

La dureza de las aguas naturales es producida sobre todo por las sales de calcio y magnesio, y en menor proporción por el hierro, el aluminio y otros metales. La que se debe a los bicarbonatos y carbonatos de calcio y magnesio se denomina dureza temporal y puede eliminarse por ebullición, que al mismo tiempo esteriliza el agua. La dureza residual se conoce como dureza no carbónica o permanente. Las aguas que poseen esta dureza pueden ablandarse añadiendo carbonato de sodio y cal, o filtrándolas a través de ceolitas naturales o artificiales que absorben los iones metálicos que producen la dureza, y liberan iones sodio en el agua. Los detergentes contienen ciertos agentes separadores que inactivan las sustancias causantes de la dureza del agua.

El hierro, que produce un sabor desagradable en el agua potable, puede extraerse por medio de la ventilación y sedimentación, o pasando el agua a través de filtros de ceolita. También se puede estabilizar el hierro añadiendo ciertas sales, como los polifosfatos. El agua que se utiliza en los laboratorios, se destila o se desmineraliza pasándola a través de compuestos que absorben los iones.

*Clasificación del Agua

Agua Dulce:
El agua dulce es agua que contiene cantidades mínimas de sales disueltas, especialmente cloruro sódico. El ser humano, con un proceso, la puede purificar y beberla lo que se llama proceso de potabilización y el agua obtenida se denomina agua potable.

Agua Salada:

Los océanos y los mares ocupan aproximadamente el 71% de l superficie del planeta y separan los continentes. Así, el Océano Pacífico que baña las costas peruanas, se caracteriza por poseer aguas tranquilas y separa al continente americano del continente asiático.Las aguas de los océanos contienen gran cantidad de sal, al igual que otros minerales disueltos, por lo que reciben el nombre de aguas saladas.

Agua Duras:


Aguas duras

Las aguas naturales contenidas en ríos, estanques, y subterranea, han entrado en contacto con rocas y materiales de diversos tipos, con ello han podido disolver en mayor o menor escala, diferentes sales en dependencia del tipo de rocas con la que haya tenido contacto.
Como de alguna de estas fuentes de abasto, es que se alimentan las fuentes de suministro de agua a nuestras casas y ciudades, puede decirse que siempre las aguas de que disponemos contienen sales disueltas.
De estas sales, algunas, y en especial las de calcio y magnesio producen efectos perjudiciales en su uso industrial y doméstico. El agua que las contiene, se conoce como agua dura.
El agua dura es particularmente perjudicial cuando se usa para la alimentación de las calderas y para el lavado de ropa al interactuar con el jabón.
Hay dos tipos de dureza en el agua: dureza temporal y dureza permanente.
De las sales que producen dureza en el agua, hay algunas que se depositan en las paredes del recipiente si el agua se somete a ebullición, por lo que la dureza del agua puede reducirse simplemente hirviéndola. Este tipo de dureza se conoce como temporal. Las sales que no tienen este efecto, y que hay que retirarlas del agua por otros métodos mas complejos producen lo que se conoce como dureza permanente.

Agua blanda

Por contraposición al agua dura, el agua blanda -o suave- es aquella que posee pocos minerales contenidos, y como principal ventaja se puede decir que sus propiedades fomentan la acción de los detergentes y químicos que se emplean para limpiar los estanques. El agua de lluvia, por ejemplo, es uno de estos tipos de agua. El agua blanda es exactamente lo opuesto al agua dura, la cual es alta en minerales disueltos, como ya hemos dicho, específicamente en magnesio y calcio. Hallaréis aguas blandas generalmente en las estepas. Siempre es dulce, y de diferentes colores, en función de las partículas en suspensión.

ENSAYO: Un Mundo sin Agua

Un mundo sin agua es algo muy malo en todo sentido y en el mundo por que en la vida sin agua, ningún ser vivo podría sobrevivir sin ella, mientras que se va acabando el mundo seria un caos, se iría convirtiendo poco a poco en un desierto.
El agua, se ha convertido hoy por hoy en un tema muy delicado a tratar para toda la humanidad; hombres, mujeres y niños por igual sufren de la falta de este vital líquido. Sin el agua nuestro mundo no existiria como lo conocemos, todo gira alrededor de este asunto, que seriamos sin el agua, la falta de este liquido aqueja mayormente a las sociedades faltas de recursos, solo habrá que ver hasta cuando.
El planeta Tierra es nuestro hogar junto a muchas otras especies. No olvidemos que las plantas y los animales llegaron antes que nosotros y merecen la oportunidad de convivir en paz. Nos prestaron su hábitat

Jennifer peña - Hasta el fin del mundo!!!!!!!!!

Girlfriend - Avril lavigne

Wake up call - Hayden Panettiere

Piece of me- Britney spears

Hilary Duff - Stranger

tal vez -- kudai

0ver - lindsay lohan

quizas- Enrique iglesias